DSN Progress Report 42-46

May and June 1978

A Probabilistic Version of Sperner’s Theorem, With
Applications to the Problem of Retrieving
Information From a Data Base

L. D. Baumert, R. J. McEliece, E. R. Rodemich, and H. Rumsey, Jr.

Communications Systems Research Section

We show how the design of an optimal “merged kevcode” information retrieval
system involves finding the probability distribution on n-bit binary words that minimizes

P{X<Y,u. .  UY,}where X, Y,,.

.., Y, are selected independently according to the

given probability distribution. We then find the minimizing probability distribution in the

case r = 1.

l. Introduction

In retrieving information from a large data base, such as will
exist in the DSN’s digital RFT Surveillance System (Ref. 1),
the technique of merged keycodes (Ref. 2} is often useful. In
this technique each record in the data base is assumed to have
a certain number of attributes. Each possible attribute 4 is
assigned a binary code (whose length is normally that of one
computer word) C (4). If the record R possesses attributes 4, ,
A,, ..., it is then assigned the merged keycode C(R) =
CAHYUCA,)U ..., where the symbol U denotes the
logical OR operation.

If one wants to locate all records in the data base possessing
a fixed set of attributes, say B, B,, ..., B, one computes
the merged keycode D= C(B,)U... UC(B,), and then tags
each record R such that D < C(R). Clearly the set of records
with the desired attributes is a subset of the tagged records.
However, some of the tagged records will not have the desired
attributes; such records are called false drops. 1t is obviously
desirable to minimize the number of false drops, other things
being equal.

Under certain circumstances, it is reasonable to model the
above situation as follows. A fixed number, say r, binary
codewords are selected independently according to a certain
probability distribution P, which is to some extent controlled
by the system design. Denote these codewords by Y, Y,,

.. Y, — they represent the keycodes of the attributes of a
randomly selected record. Let X, ..., X, s<r denote the
keycodes corresponding to the attributes in a random query of
the data base. We assume the X, are chosen independently
according to the same probability distribution P. The proba-
bility of false drop is then

P{X,U.. .UX, <Y, U...UY}=P{X <Y U. . . UY}

Thus we are led to ask: What is the probability distribution on
n-bit binary words that minimizes the probability
P{X, <Y, U...UY,]} for various values of r?

In this article, we will solve this question for the case r = 1.
It is hoped that the techniques developed can be brought to
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bear for larger values of . In the remainder of this section, we
will describe our main result.

Let €2 be a finite set with n elements, and let V' = V()
denote the collection of all subsets of Q. For x € V, |x]|will
denote the cardinality of x. The relations of set inclusion and
proper set inclusion will be denoted by x < y and x < y,
respectively. The empty set, viewed as an element of V, will be
denoted by 0, and 2 itself, as an element of V, by 1.

Let p(x) be a probability distribution on ¥V, and let X and Y
be elements of ¥ chosen randomly and independently accord-
ing to p. We denote by P{X < Y7} the probability that X will
be a subset of Y. Our main result is the following.

Theorem 1. If n > 1, then for any probability distribution,

no\"!

PIX<Y}> <[£]
b

Furthermore equality holds for the probability distribution
defined by

=0 otherwise

In the remainder of this section, we make some remarks
about Theorem 1 and its proof. The proof itself occupies
Sections 11—V,

(1) The restriction n > 1 is necessary, since with n = 1,
the probability distribution p(0) = p(1) = 1/2 gives
P{X <Y} = 3/4, whereas

(2) Let Y = {y,.,..., ¥p) be a set of M pairwise non-
comparable elements of V, i.e., y, <yj iff i=j. 1f we
define a probability distribution p(x) by

p(x)=£1~ ifxeY

=0 otherwise
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then clearly P{X < Y} =P{X =Y} = 1/M. Hence by
Theorem 1,

n
M<||n
2

This is Sperner’s famous bound (see Ref. 3, for
example) on the maximum number of non-comparable
elements in V. Thus (for n > 1) Theorem 1 can be
viewed as a generalization of Sperner’s bound.

(3) For even values of n, it is possible to show that the

particular probability distribution cited in the state-
ment of Theorem 1 is the only one for which equality
holds. For odd n = 3, the obvious alternate distribution

n -1

p(x) = [%] if |x]| = [%:l +1

=0 otherwise

also achieves equality. For odd n = 5 this is the only
other equality-achieving distribution. However, for n =
3 there are infinitely many extremal distributions:

plx) =a if{x|=1

1/3-a iflx]=2
=0 if x| =0or3,for0<a<1/3

(These facts can all be proved by making a careful
study of our proof of Theorem 1. For the sake of
brevity, however, we shall omit the details.)

(4) Our proof contains two main ideas. First, by using

more-or-less standard calculus techniques, one ‘can
obtain very strong necessary conditions satistied by any
extremal probability distribution. This we do in
Section II. Second, we derive in Section IV (after some
preliminary material in Section lII) a lemma dealing
with the expected number of maximal chains through a
point of V which is selected according to a given
probability distribution. This lemma was motivated in
part by Lubell’s classic proof (Ref.3) of Sperner’s
theorem. Finally in Section V, these two ideas are
combined to give our proof of Theorem 1.



(5) A possible alternate form of Theorem 1 would concern
minimizing the probability that X and Y are compara-
ble. It turns out that this problem is much easier to
handle; the resuit is

-1

n
PIX<Y or X>Y}> ([ﬁ})
2

for all n, and equality occurs only for a uniform
probability distribution on the subsets of cardinality

GG

However, this inequality follows already from a
theorem of Motzkin and Strauss (Ref. 4), together with
Sperner’s original theorem.

=

\9]

Il. Lagrange Multipliers
The probability Q (p) = P {X < Y} is given by the sum

p) = 2{p()p(y) : x < y} 0y

We are asked to minimize the function Q of the 2" variables
(p(x), x € V), subject to the following constraints:

dop) =1 2)
xeV
p(x)=0,allx eV )

Suppose p is a probability distribution that minimizes Q (p)
subject to (2) and (3), and let G = {x : p(x) > 0}. Temporarily
we regard p and G as being fixed. Consider now the new
problem of minimizing the function

Q@) = Z{q(x)q(y) : x<y,x,y e G} 4)

where ¢ is a real-valued function defined on G, subject to the
single linear constraint

Y a1 (5)

xeG

(N.B. g is not required to be a probability distribution.)

Let B = min {p(x)? :x € G}, and let U denote the Eu-
clidean neighborhood of the function p (restricted to G)
defined by

U= {q: ZG (q(x) - p()? <B} (6)

Clearly if q € U, then g(x) > 0 for all x € G. Thus by the
assumed extremal property of p, we have

Q5(q) = Q. (p), for all g € U satisfying (5) @

Thus p (restricted to G) gives a local minimum of the func-
tion Qg, subject to the constraint (5), and so by the
Lagrange multiplier rule there exists a constant A\ such that

aQG—xf IxeG 8
) ,forall x e (8)

Using (1), this becomes
20() + 25 () + 2 () = A forallx e G (9)
y<x y>x

Furthermore, since P{X < Y} = P{X > Y} by symmetry,

WPIXSYI=PX<Y}+PX2Y}

IS { y; () + ;xp(y)}
= 2 o {0+ PIFUEIEY

= ;Gp(x>=x, by (9)

Thus we have identified the constant X in (9), and so we
have

y>x

2p(x) + y; p() + 2 p(v) = 2PX < Y},

forallx e G (10)
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Equation (10) is the condition which must be satisfied by
any extremal probability distribution that we will return to
in Section V.

Note: Equation (9) follows immediately from the Kuhn-Tucker
theorem of nonlinear programming (Ref. 5), and indeed one
can also conclude from K-T that the left side of (9) is =\ if
x ¢ G. We have included this elementary derivation only to
make our exposition more self-contained.

lil. Preliminaries About Chains

A chain of length r in ¥ is an (r + 1)-tuple ¢ = (x,, x,,
..., x,) of elements from V such that x, <x, <...<x,.
If in addition we have |x,, = lx;/+ 1, ¢ is said to be a
maximal chain (of length r) from x, to x,. Such a chain is
said to pass through each of the points x,, x,, ..., x,.

If (vo, ¥4, ... V,,) is any chain in V, we denote by
MC(yq, ..., ¥,,) the set of all maximal chains from y, to
Y, Wwhich pass through each of the y;’s. The number of
maximal chains in MC(y,, ..., »,,) is denoted by f(y,,

-3 V). Thus

f(y()v"'aym):WC())()7""ym)| (]1)

If (vo, .-\ Yo o« s Vyp) is @ chain, it is clear that every
maximal chain in MC(y,, ..., »,,) can be decomposed
uniquely into a chain from MC(y, ..., y,) followed by a

chain from MC(y,, ..., y,,). Hence
FOor o Vi V) =005V Os o5V )
(12)
and by induction it follows that
m-1
FOo o ¥m) = I F i) (13)
i=0

In view of (13), in order to compute f(c) for a general
chain ¢, it suffices to consider the case where ¢ = (x, y)
consists of only two elements. This we now do.

Let x = x5 <x, <...<x, =y bea maximal chain
from x to y and let x,, - x;= {w;}, i= 0,1,...,r ~ 1

13
Then (wy, w, ..., w,_,) is a permutation of the elements
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in the set y - x. Conversely, if (w,,..., w,_;) is any per-
mutation of y - x, and if we define x; =x U {wy, w;, ...,
w;_y }, then (x4, ..., x,) will be a maximal chain from x, =
X to x,= y. Hence there is a one-to-one correspondence
between chains from x to y and permutations of y - x:

fepy) =1y - x|! (14)
m-1

Fos -5 =TI Wiry - 21! (15)
=0

As a final bit of notation, for x € V let N(x) be the
number of maximal chains from 0 to 1 passing through x.
Then

Nx)=1(@©0,x, 1)

=10, )7 (x, 1)

= x| (- |x])! :”!/(|Zl) (16)

Note that as a function of x, M(x) achieves its minimum
value when |x| =n/2 for n even, and |x|= (n = 1)/2 for n
odd. Thus if we define afn) = [n/2]! (n - [n/2])!, we have

NMx) 2 aln), all x e V, (17

with equality iff x = {n/2] orn - [n/2].

IV. A Basic Lemma

Let G be a subset of V. If ¢ = (xy, ..., x,) is a chain in
V, and at least one element of ¢ lies in G, we define L(c)
(““the last element of ¢ lying in G”"), as follows:

Le(e) =x,, where k =max {i: x; e G} (18)
If no element of ¢ lies in G, Ls(c) is undefined.
Further, we define for each x ¢ V,
Ng(x) ={{c e MC(0, 1): Lg(e) = x 1 (19)



Thus N(x) is the total number of maximal chains from 0
to 1 whose last element in G is x. If now for each x e V we
define g (x) by

gx)=1{c e MC(x, 1): Lg(c) =x}| (20)

ie., g(x) is the number of maximal chains from x to 1
whose last element in & is x itself, it follows that

Ngx)=7(0,x) g (x) (21)

If p is a probability distribution on ¥V, and if X is an
element of ¥ chosen randomly according to p, the number
of maximal chains from O to 1 passing through X, M(X) is a
random variable whose expectation is given by E(MX))=
Z{px)M(x): xeV} The following lemma gives another
formula for E(MX)) which is crucial in our proof of
Theorem 1.

Lemma 1

Let p be a probability distribution on V, and let G =
{x e V: p(x) >0}. Then

_ -1
PN = 3 V() 3 pl) (:ﬁ : )

xeV yeG X<y

Proof
Using the fact that p(x) = 0 if x ¢ G, and (16), we have

D PN =Y p(x) O, ) fx, 1) (22)

xeV xeG

We now classity the chains in MC(x, 1) according to their
last element in G. If y 2 x, then the number of maximal
chains from x to 1 whose last element in G is yp is

f(x,»)g(»). Thus

Fe, D=3 Flx 2)e() (23)

y=x

Replacing f(x, 1) in (22) by the sum (23), and interchanging
the order of summation, we get

2. PEONE) = 3 g() Y p() 0. x)f(x, »)

xeV veG X<y

= 210,020 Y px) 7(0,y)

yeG x<y

But by (21), £(0, y)g(¥) = Ng(y). And by (14),

1O G _Ixltly - xl!_ (ut)”
AUSY Iyt

fx |

This proves Lemma 1.

V. Proof of Theorem 1

We are now in a position to give a short proof of
Theorem 1. The idea of the proof is to estimate the expected
number of maximal chains through a randomly selected point
of Vin two ways. On one hand, this expectation is certainly at
least a(n) by (17). On the other hand, using the machinery we
have developed in Sections II-1V, we will show that this expec-
tation (at least for an extremal probability distribution) is at
most PLX <Y} n! The resulting bound, P{X < Y}> a(n)/
n!, is the bound of Theorem I. Let us now see how this proof
goes in detail.

Let p be a probability distribution that minimizes Q(p) =
P{X<Y} and let G= {xe V: p(x) >0} Then by Lemma 1,

Iy!
3 N = 3 V() Y p(x)(li |) (24)

xeV yeG XSy

By (17), M(x) 2 a(n) for all x. Hence

2 PEING) > aln) (25)

xeV
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Let us rewrite the inner sum in (24) in the following way:

-1 | -1
Zp(x)(:i'l) () +Y p(x)(;'l) (26)

x<y x<y

We now claim that if # > 1, and x <y,

[yl

-1
1
|x|) <yre 27)

p(x) (

If x # 0, (27) is obvious since then the binomial coefficient
will be = 2. If x = 0, the binomial coefficient is 1, but (27) is
true anyway because p(0) = 0. This can be seen as follows.
Let x = 0 in (10); we get P{X < Y}=1/2+ 1/2 p(0). Hence
if p(0)> 0, then P{X <Y} >1/2. But since n>1 we can
select two non-comparable elements x, and x, and define a
probability distribution g by setting g(x) = q(x,) = 1/2. For
this probability distribution we clearly have P{X <Y}= 1/2.
This shows that no distribution that minimizes P{X < Y} for
n > 1 can have p(0) >0, and this completes the proof of
27).

Combining (26) and (27), we get

I—l
Zp(x)(:;) <p()+3 Y plx)

x<y x<y

<p(y)+% Z p(X)ﬂ“% E p(x)

x<y x>y

(28)
We now apply (10) to (28) and conclude that
Iy ,
> px) SPX<Y} ifyeG (29)
i<y [x]
Combining (24), (25), and (29), we get
a(n) SPX <Y} Y Ng(v) (30)

yeG

Finally we observe that each maximal chain from O to 1
is counted at most once in the sum (30). (if ¢ is such a
chain and if Lg(c)= p, it is counted by the term N (v).)
Since the total number of such chains is n! (see Eq. 14), we
get ZN(y) < n! and hence, finally,

.
PIX< Y}>M= n 31
o [2] (31)

This completes the proof of Theorem 1.
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